UNIT GROUPS OF THE INTEGRAL GROUP RINGS OF CYCLIC GROUPS OF ORDERS $2 p$, WHERE $p \geq 5$ IS A PRIME

R. ZH. ALEEV, V. N. ALEEVA

In [1], the units of the integer group rings of cyclic groups of prime orders were studied. Here we consider the units of the integral group rings of cyclic groups of orders $2 p$ for a prime $p \geq 5$.

Further, we use the following notations.
(1) $p \geq 5$ is a prime integer.
(2) $G=\langle x\rangle$ is a cyclic group of order $2 p$.
(3) α is a primitive p-th root of unity.
(4) χ is the character of the group G for $\chi(x)=\alpha$.
(5) $\mathbf{Q}(\chi)$ is the character field of χ.

According to [2], for the character χ and the element $\mu \in \mathbf{Q}(\chi)$, we define an element of the rational group algebra $\mathbf{Q} G$,

$$
u_{\chi}(\mu)=1+\sum_{\varphi \in \operatorname{Aut}(\mathbf{Q}(\chi))}(\varphi(\mu)-1) e(\varphi(\chi)),
$$

where $e(\varphi(\chi))$ is the minimum idempotent corresponding to the character $\varphi(\chi)$.
Let g be a primitive root modulo p. Denote by

$$
\mu_{0}=\frac{1-\alpha^{g}}{1-\alpha}=1+\alpha+\cdots+\alpha^{g-1}
$$

Let f be the multiplicative order of 2 modulo p and

$$
r=\operatorname{Lcm}\left(\frac{p-1}{2}, 2^{f}-1\right)
$$

Theorem. Let $\operatorname{Un}\left(\mathbf{Z}\left\langle x^{2}\right\rangle\right)$ be a unit group of the integral group ring of a subgroup of order p. For $m \in\{1,2, \ldots, p-1\}$, we denote by φ_{m} an automorphism of the field $\mathbf{Q}(\chi)$ such that $\varphi_{m}(\alpha)=\alpha^{m}$. Then

$$
\operatorname{Un}\left(\mathbf{Z}\left\langle x^{2}\right\rangle\right) \times \prod_{k=0}^{(p-5) / 2}\left\langle u_{\chi}\left(\varphi_{g^{k}}\left(-\mu_{0}^{r}\right)\right)\right.
$$

has a finite index in $\operatorname{Un}(\mathbf{Z} G)$.

References

[1] R. Zh. Aleev, Krugovye edinicy v gruppovyh kolcah konechnyh abelevyh grupp. Algebra i logika: Mater. mezhd. ross-kit. seminara. Irkutsk: Izd. Irkut. gos. ped. un-ta, 2007, 11-14.(in Russian)
[2] R. Zh. Aleev, Units of character fields and central units of integral group rings of finite fields, Siberian Advances of Mathematics, 11:-1 (2001), 1-33.

South Ural State University, Chelyabinsk State University, Chelyabinsk (Russia)
Email address: aleevrz@susu.ru, aleevavn@susu.ru

